Accelerating sequence searching: dimensionality reduction method
نویسندگان
چکیده
منابع مشابه
Thresholding Method for Reduction of Dimensionality
Often recognition systems must be designed with a relatively small amount of training data. Plug-in test statistics suuer from large estimation errors, often causing the performance to degrade with increasing size of the measurement vector. Choosing a better test statistic or applying a method of dimensionality reduction are two possible solutions to the problem above. In this paper we consider...
متن کاملDiscrete Hessian Eigenmaps method for dimensionality reduction
For a given set of data points lying on a low-dimensional manifold embedded in a high-dimensional space, the dimensionality reduction is to recover a low-dimensional parametrization from the data set. The recently developed Hessian Eigenmaps is a mathematically rigorous method that also sets a theoretical framework for the nonlinear dimensionality reduction problem. In this paper, we develop a ...
متن کاملDimensionality Reduction
Dimensionality reduction studies methods that effectively reduce data dimensionality for efficient data processing tasks such as pattern recognition, machine learning, text retrieval, and data mining. We introduce the field of dimensionality reduction by dividing it into two parts: feature extraction and feature selection. Feature extraction creates new features resulting from the combination o...
متن کامل2D Dimensionality Reduction Methods without Loss
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...
متن کاملThresholding method for dimensionality reduction in recognition systems
Often recognition systems must be designed with a relatively small amount of training data. Plug-in test statistics suffer from large estimation errors, often causing the performance to degrade as the measurement vector dimension increases. Choosing a better test statistic or applying a method of dimensionality reduction are two possible solutions to this problem. In this paper, we consider a r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Knowledge and Information Systems
سال: 2008
ISSN: 0219-1377,0219-3116
DOI: 10.1007/s10115-008-0180-0